THE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G

Authors

  • A. Erfanian Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran.
  • Gh. A. Nasiriboroujeni Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran.
  • M. Mirzavaziri Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran.
Abstract:

To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the connectedness of $G$ and $G_{triangle,square}$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The edge tenacity of a split graph

The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...

full text

Edge Domination in Boolean Function Graph B(g, L(g), Ninc) of a Graph

For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The Boolean function graph B(G, L(G), NINC) of G is a graph with vertex set V(G)E(G) and two vertices in B(G, L(G), NINC) are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted...

full text

The transformation graph G++-

The transformation graph G++− of G is the graph with vertex set V (G)∪ E(G) in which the vertices u and v are joined by an edge if one of the following conditions holds: (i) u, v ∈ V (G) and they are adjacent in G, (ii) u, v ∈ E(G) and they are adjacent in G, (iii) one of u and v is in V (G) while the other is in E(G), and they are not incident in G. In this paper, for a graph G, we determine t...

full text

the edge tenacity of a split graph

the edge tenacity te(g) of a graph g is de ned as:te(g) = min {[|x|+τ(g-x)]/[ω(g-x)-1]|x ⊆ e(g) and ω(g-x) > 1} where the minimum is taken over every edge-cutset x that separates g into ω(g - x) components, and by τ(g - x) we denote the order of a largest component of g. the objective of this paper is to determine this quantity for split graphs. let g = (z; i; e) be a noncomplete connected spli...

full text

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Edge pair sum labeling of spider graph

An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  83- 93

publication date 2020-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023